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1. Quadratic forms and lattices

Consider an quadratic form A[x] =
∑
aijxixj in r variables. We

assume that A = AT � 0 is positive definite. Then we can write
A = BTB with B invertible.
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We will say that A is integral if

aii ∈ Z and 2aij ∈ Z i 6= j

Therefore if A is integral, we have A[x] ∈ Z whenever x ∈ Zr
The problems we shall want to address
a) Given n ∈ Z≥0, when can we solve A[x] = n for x ∈ Zr? For

instance, which integers are sums of two squares, or three squares, or
four squares...

b) Denote rA(n) = #{x ∈ Zr : A[x] = n}. We want a formula, or at
least an approximation, for rA(n).

1.1. Terminology: quadratic forms and lattices. There are two
ways to speak about (positive definite) quadratic forms:

a) Start with Rr equipped with the standard inner product 〈x, y〉 =∑r
j=1 xjyj. We denote ||x||2 = 〈x, x〉. Take a lattice L ⊂ Rr, and a

basis L = ⊕rj=1Zwj. The associated Gram matrix is

A = (aij) = (〈ωi, ωj〉)
which is clearly symmetric, and is positive definite, since

A[x] := xTAx =
∑
ij

aijxixj = ||
∑

xjwj||2

is non-negative, and because {wj} are linearly independent, can only

vanish if x = ~0. We say that the quadratic form A is induced on the
lattice L.

b) Fix the integer lattice Zr. Given a symmetric, positive definite
matrix A = AT � 0 define an inner product by

〈x, y〉A := xTAy

Then we can obtain a lattice L = LA ⊂ Rr and a basis wj of L so that
the corresponding Gram matrix (w.r.t. the standard inner product) is
A: aij = 〈wi, wj〉.

Indeed, find an orthonormal basis {uj} of Rr w.r.t. the inner product
〈•, •〉A: 〈ui, uj〉A = δij. Define a linear map Ω ∈ GL(r,R) by

Ωuj = ej

where ej = (0, . . . , 0, 1, 0 . . . ) is the standard basis of Rr. Then

A = ΩT · Ω,
because

uTi ΩTΩuj = eTi ej = δij = 〈ui, uj〉A = uTi Auj

Now take
L := ΩZr, wj = Ωej
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Then

〈wi, wj〉 = 〈Ωei,Ωej〉 = eTi ΩTΩej = eTi Aejaij

so that the Gram matrix of L w.r.t. the basis {wj} is precisely A.

1.2. Volume and determinant of a lattice. Let L ⊂ Rr be a lattice,
and A = AT � 0 an associated Gram matrix. Define the determinant
of the lattice to be detL := detA.

Choosing a different basis {w′j} gives a Gram matrix A′, related to
A via

A′ = CTAC

where C = (ck`) is the change of basis matrix, given by

w′i =
∑
k

ckiwi

The matrix C is an integral matrix with integral inverse: C ∈ GL(r,Z).
In particular detC ∈ Z∗ = {±1}. Therefore detA′ = detA, so that
detL := detA is well-defined.

Alternatively, recall that if Ω : Rr → Rr is the linear map such that
for an orthonormal basis uj for the inner product 〈x, y〉A = xTAy, we
have uj = Ωej with ej the standard basis, then A = ΩTΩ and then

detL = detA = (det Ω)2

We can also describe detL in terms of the volume of any fundamental
domain D for L:

detL = (volD)2 =
(

vol(Rr/L)
)2

Indeed, since A = AT � 0, we can write A = ΩT · Ω, and if
Ω = (w1| . . . |wr) then L = ΩZr = ⊕Zwj (now think of wj as col-
umn vectors). Then D = Ω · [0, 1]r is a fundamental domain for L, and

therefore its volume is volD = det Ω =
√

detA.

Lemma 1.1. If L′ ⊂ L is a lattice of index [L : L′] then

detL′ = [L : L′]2 · detL

Proof. Let {`j : j = 1, . . . , d} ⊂ L be a set of representatives for L/L′.
Then as a fundamental domain for L′ we may take

D′ = ∪dj=1(`j +D)

and then clearly vol(D′) = d vol(D), so that

detL′ = (volD′)2 = d2(volD)2 = d2 detL

�
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1.3. The dual lattice. If L ⊂ Zr is a lattice, define

L∗ = {x ∈ Rr : 〈x, `〉 ∈ Z, ∀` ∈ L}
This turns out to also be a lattice, called the dual lattice to L.

Example: If L = ⊕Zmjej (ej is the standard basis of Zr) then
L∗ = ⊕Z 1

mj
ej.

The dual lattice of L = ΩZr is then

L∗ = (ΩT )−1Zr

Indeed.

x ∈ L∗ ⇔ xT · Ωn ∈ Z,∀n ∈ Zr ⇔ ΩTx ∈ (Zr)∗ = Zr ⇔ x ∈ (ΩT )−1Zr

Consequently, we find

detL∗ = (det(ΩT )−1)2 = (det Ω)−2 = (detL)−1

so that

det(L∗) =
1

detL
We say a lattice L is self-dual if L∗ = L. Necessarily, we have

detL = 1 in this case.

1.4. Direct sums. Given two quadratic forms, we can create a new
one, called the direct sum, as follows: If L ⊂ Rr, and L′ ⊂ Rs are
lattices, then we create a lattice L ⊕ L′ ⊂ Rr × Rs ' Rr+s. Choosing
bases {wi} of L and {w′j} of L′ gives Gram matrices A and A′, and the
Gram matrix associated to the basis {(wi, wj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s}

is the direct sum

(
A 0
0 A′

)
. Clearly det(L⊕ L′) = detL · detL′.

1.5. Integrality. We say that the lattice L (or the quadratic form A)
is integral if xTAy ∈ Z for all x, y ∈ Zr, equivalently if 〈`, `′〉 ∈ Z for
all `, `′ ∈ L. For instance, if L ⊆ Zr then L is integral.

For an integral lattice, we have by definition L ⊆ L∗.
We say that L is even if 〈`, `〉 ∈ 2Z is even for all ` ∈ L. Necessarily

this implies that L is integral, since

〈`, `′〉 =
1

2

(
|`+ `′|2 − |`|2 − |`′|2

)
Exercise 1. Show that if L is integral then

detL = #(L∗/L) = [L∗ : L]
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2. Theta functions

2.1. Definition of theta functions. Let L ⊂ Rr be a lattice. We
define the associated theta function θL(τ), for τ ∈ H by

θL(τ) :=
∑
`∈L

q〈`,`〉/2, q = e2πiτ

Note that
θL(τ) =

∑
n≥0

rL(n)qn/2

where

rL(n) = #{` ∈ L : 〈`, `〉 = n} = #{x ∈ Zr :
1

2
Q[x] = n}

in particular, rL(0) = 1. If L is integral then the sum is over n ∈ N.
The sum is absolutely convergent for all τ ∈ H (equivalently, |q| < 1)

because as we saw, rL(n) grows at most polynomially. Hence θL(τ) is
analytic in H. If L is integral then it also satisfies θL(τ + 2) = θL(τ).
If moreover L is even then θL(τ + 1) = θL(τ).

For instance, taking L = Zk the standard lattice, we have

θZk(τ) =
∑
n≥0

rk(m)qm/2

with
rk(m) = #{x ∈ Zk : m = x21 + · · ·+ x2k}

2.2. The Fourier transform and the Poisson summation for-
mula.

Definition. The Schwartz space S(Rd) consisting of smooth functions
f so that f and all its derivatives decay rapidly:

S(Rd) = {f ∈ C∞(Rd) : ∀α, β ∈ Nd, sup
x∈Rd

|xα∂βf(x)| <∞}

where

xα :=
d∏
j=1

x
αj

j , ∂βf :=
∂β1+···+βdf

∂β1x1 . . . ∂βdxd
.

Clearly C∞c (Rd) ⊂ S(Rd) ⊂ Lp(Rd) for all p ≥ 1.

Example: The Gaussian e−x
2

lies in S(R).
The Fourier transform of a Schwarz function f ∈ S is defined as

F(f) = f̂(y) =

∫
Rd

f(x)e−2πix·ydx

Using integration by parts, it is easy to see that if f ∈ S then so is f̂ .
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Theorem 2.1. Let g(x) = e−πx
2
. Then ĝ = g.

It is easy to check that the Fourier transform intertwines dilation
operators: If λ > 0, and (Dλf)(x) := f(x/λ) (f ∈ S), then

(̂Dλf)(y) = λdf̂(λy)

The Poisson summation formula

Theorem 2.2. Let L ⊂ Rr be a lattice. Then for f ∈ S(Rd),∑
`∈L

f(`) =
1√

detL

∑
λ∈L∗

f̂(λ)

In particular, ∑
n∈Zd

f(n) =
∑
m∈Zd

f̂(m)

2.3. The functional equation of theta functions.

Theorem 2.3. Let L ⊂ Rr be a lattice. Then

θL(τ) =
1√

detL
(−iτ)−r/2θL∗(−1

τ
)

Proof. We do it in the special case of the standard one-dimensional
lattice L = Z ⊂ R so that

θ(τ) :=
∑
n∈Z

eiπτn
2

and we claim

θ(−1

τ
) =
√
−iτθ(τ)

where the branch of the square root is determined so that
√
w > 0 if

w > 0.
Indeed, since both sides are analytic in H, it suffices to show that

they coincide on the imaginary axis τ = iy, y > 0, that is to show

θ(i/y) = y1/2θ(iy)

But

θ(iy) =
∑
n∈Z

e−πn
2y =

∑
n∈Z

fy(n)

where fy = D1/
√
yf1, f1(x) = e−πx

2
, whose Fourier transform is

f̂y(x) = D̂1/
√
yf1(x) =

1
√
y
f̂1(

x
√
y

) =
1
√
y
e−πx

2/y
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Applying the Poisson summation formula we have

θ(y) =
∑
n∈Z

fy(n) =
∑
m∈Z

f̂y(m) =
∑
m∈Z

1
√
y
e−πm

2/y =
1
√
y
θ(
i

y
)

as claimed. �

2.4. The theta function of even self-dual lattices. Assume now
that L ⊂ Rr is even and self-dual. (It turns out, and we will see this
below, that such lattices only exist if 8 | r). Then the theta function
satisfies

θL(τ + 1) = θ(τ), θ(−1/τ) = (−iτ)r/2θ(τ)

and if 8 | r then θL is a weakly modular form of weight r/2 for SL(2,Z).
Since

θ(i∞) = #{` ∈ L : 〈`, `〉 = 0} = 1

for any lattice, we have the condition of being “bounded at infinity”,
and we obtain

Theorem 2.4. Let L be an even, self-dual lattice of dimension r. Then
θL ∈Mr/2(SL(2,Z)) is a modular form of weight r/2 for SL(2,Z).

Let L be an even self-dual lattice. Then we saw that θL ∈Mk(SL(2,Z)),
k = dimL/2. Thus we can write θL = cEk+f for a cusp for f ∈ Sk and
a scalar c ∈ C, where Ek = 1 + γk

∑
n≥1 σk−1(n)qn is the normalized

Eisenstein series. Since both Ek(i∞) = 1 = θL(i∞), we must have
c = 1, so that

θL = EdimL/2 + f

Using Hecke’s bound on the size of Fourier coefficients of cusp forms,
we obtain

Corollary 2.5. Let L be an even self-dual lattice of dimension dimL =
8s. Then for all n ≥ 1

rL(2n) = γ4sσ4s−1(n) +OL(n2s)

Recall that

γ4 = 240, γ8 = 480, γ12 =
65520

691
, γ16 =

16320

3617
.

Since σ4s−1(n) ≈ n4s−1, the remainder term is of smaller order. In
particular, we find that for n �L 1, rL(2n) 6= 0, so that there is a
vector in L of norm 2n.
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3. The lattices E(r)

3.1. Construction. We now construct some important examples of
integral (and even) lattices: Let

F = {x ∈ Zr : 〈x, x〉 = 0 mod 2↔
r∑
j=1

xj = 0 mod 2} ⊂ Zr

This is sublattice of index two in Zr, since F is the kernel of the sur-
jective map Zr → Z/2Z, x 7→

∑
j xj mod 2. Let

δ := (
1

2
,
1

2
, . . .

1

2
) ∈ Rr

Now note that if r is even, then 2δ ∈ F . From now on assume then
that r is even. Let

E(r) = F + Zδ
be the lattice generated by F and the vector δ. Since 2δ ∈ F but
δ /∈ F , we have

[E(r) : F ] = 2

ie F is a sublattice of index two in E(r). Since also [Zr : F ] = 2, we
must have

volE(r) = volZr = 1

Because δ /∈ Zr, also E(r) 6⊆ Zr.

Lemma 3.1. a) If 4 | r then E(r) is an integral lattice
b) If 8 | r then E(r) is even.

Proof. a) Write ` = f + mδ ∈ L, `′ = f ′ + m′δ ∈ L, with f, f ′ ∈ F ,
m,m′ ∈ Z. Then

〈`, `′〉 = 〈f, f ′〉+m〈δ, f ′〉+m′〈f ′, δ〉+mm′〈δ, δ〉

Now 〈f, f ′〉 ∈ Z since F ⊂ Zr, and 〈f, δ〉 = 1
2

∑
j fj ∈ Z since

∑
fj ∈

2Z by definition of F . So it suffices to check when 〈δ, δ〉 is an integer.
But

〈δ, δ〉 =
r

4
∈ Z⇔ r = 0 mod 4

so that E(r) is an integral lattice if (and only if) 4 | r.
b) To check when is E(r) even, we use the same approach: If f =

(f1, . . . , fr) ∈ F then

〈`, `〉 = 〈f, f〉+ 2m〈f, δ〉+m2〈δ, δ〉 ≡ m
∑
j

fj +m2 r

4
mod 2
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since 〈f, f〉 ∈ 2Z. Now m2 = m mod 2, and
∑
fj ≡ 〈f, f〉 = 0 mod 2

so that
〈`, `〉 ≡ m

r

4
mod 2

This will be even for all m ∈ Z iff r/4 ∈ 2Z, that is iff 8 | r. �

Lemma 3.2. If 4 | r then E(r)∗ = E(r), that is E(r) is self-dual.

Proof. We have
Zr ⊃ Fr ⊂ E(r)

both with index 2. Taking duals reverses inclusions and preserves in-
dices, and we get

Zr = (Zr)∗ ⊂ F ∗r ⊃ E(r)∗

with both inclusions of index 2. Hence

22 det(E(r)∗) = det((Fr)
∗) = 22 det((Zr)∗) = 22 detZr = 22 · 1

so that
det(E(r)∗) = 1

Also, since 4 | r, E(r) is integral so that E(r) ⊆ E(r)∗, and hence

1 = det(E(r)∗) = [E(r)∗ : E(r)]2 detE(r) = [E(r)∗ : E(r)]2 · 1
so that [E(r)∗ : E(r)] = 1. Hence E(r)∗ = E(r) so that E(r) is self-dual
if 4 | r. �

Corollary 3.3. E(8k) is an even, self-dual lattice.

We can create more even self-dual lattices by taking direct sums
(which preserve these properties). Thus in dimension 16 we have the
lattice E(8)⊕ E(8), as well as E(16). We will soon see that these are
not isomorphic.

3.2. The lattice E(8). As an example, take the case of dimension 8,
where we have the E(8) lattice. Then there are no cusp forms of weight
4, so that

θL = E4

Hence ∑
n≥0

rL(2n)qn = 1 + 240
∑
n≥1

σ3(n)qn

so that
rL(2n) = 240σ3(n)

in particular rL(1) = 240, so that there are 240 vectors of norm 2.
It turns out (e.g. by using the (Smith-Minkowski-) Siegel mass for-

mula) that there is only one even self-dual lattice in dimension 8,
namely E(8) (proved by Mordell).
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A basic question about any lattice is the existence of “short” vectors.
For even lattices, the shortest possible is vectors of norm |`|2 = 2.

Consider the case of the lattice E(8). As we saw by identifying the
theta function of E(8), there are exactly 240 vectors of norm 2. The
following vectors have norm 2 (where ei are the standard basis vectors):

±ei ± ek, 1 ≤ i < k ≤ 8,

1

2

8∑
j=1

εjej, εj = ±1,
8∏
j=1

εj = 1

this is a set of 240 vectors of norm 2, hence we have identified all
minimal vectors in E(8).

Exercise 2. Check that these vectors all lie in E(8).

Exercise 3. As a basis for E(8) we can take the following subset of
minimal vectors

v1 =
1

2
(e1+e8)−

1

2
(e2+· · ·+e7), v2 = e1+e2, vi+1 = ei−ei−1, 2 ≤ i ≤ 7

The corresponding Gram matrix is (Figure 1)

Figure 1. A Gram matrix for E(8).

3.3. Dimension 16: non-isomorphic lattices with the same theta
function. It turns out (E. Witt, using the “mass formula”) that there
are only 2 even self-dual lattices in dimension 16, namely E(8)⊕E(8)
and E(16).
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Proposition 3.4. For any even self-dual lattice L in dimension 16 we
have

θL = E8

(E8 denotes the normalized Eisenstein series).
Indeed, θL ∈ M8(SL(2,Z)) = CE8 and since M8 is one-dimensional,

θL has to be a multiple of E8. They have the same zero-th fourier
coefficient since θL(i∞) = 1 for any L, and likewise E8(i∞) = 1. so
that

θL = E8 = 1 + 480
∑
n≥1

σ7(n)qn

so the number of vectors of norm 2 is given by

rL(2) = 480σ7(1) = 480

that is, any self-dual even lattice in dimension 16 has exactly 480 vec-
tors of norm 2.

As a corollary, we see that the vectors of norm 2 in E(16) are precisely
the 480 vectors ±ei ± ek, 1 ≤ i < k ≤ 16. Their span is contained in
F16 ⊂ Z16 so they do not span E(16).

Exercise 4. For any m ≥ 2, the vectors of norm 2 in E(8m) are
precisely ±ei ± ek, 1 ≤ i < k ≤ 8m (there are 2 · 8m · (8m − 1) such
vectors).

Note that these vectors lie in F8m ⊂ Z8m so they do not span E(8m).

Corollary 3.5. E(16) and E(8)⊕ E(8) are not isomorphic.

Indeed, the vectors of norm 2 span E(8), hence also E(8)⊕E(8), but
they do not span E(16), because in that case they all lie in F16 ⊂ Z16.

3.4. Isospectral tori. Note that we saw

θE(16) = θE(8)⊕E(8) = E8

Thus we have found a pair of lattice with the same theta function which
are not isomorphic.

This was used by Milnor to observe that the corresponding flat tori
R16/L (L = E(8) ⊕ E(8) or E(16)) are isospectral but not isometric.
So one cannot “hear the shape of a drum” in dimension 16...

Indeed, for any lattice L ⊂ Rr, we define a flat torus Rr/L, that is
the metric is the flat Euclidean metric, and functions on Rr/L are just
functions on Rr which are periodic with respect to L: f(x+ `) = f(x),
∀` ∈ L.
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An important example are the following: Given a vector `∗ ∈ L∗ in
the dual lattice, let

f(x) = f`∗(x) = e2πi〈x,`
∗〉

Then check that f(x+ `) = f(x), ∀` ∈ L (since 〈`, `∗〉 ∈ Z). It is a fact
that these give an orthonormal basis of L2(Rr/L).

Now note that these are eigenfunctions of the Euclidean Laplacian
∆ =

∑r
j=1

∂2

∂x2j
, with eigenvalue

−∆f = 4π2|`∗|2f

and consequently the spectrum of the Laplacian on this flat torus con-
sists of the numbers 4π2n, where n = |`∗|2 is a norm of a dual lattice
vector, with multiplicities rL∗(n).

Thus the tori associated to L = E(8) ⊕ E(8) or E(16) are isospec-
tral. It also turns out that Rr/L is isometric to Rr/L′ (as Riemannian
manifolds) if and only if L and L′ are isometric (as lattices). Thus the
two flat tori R16/L (L = E(8)⊕E(8) or E(16)) are isospectral but not
isometric.

3.5. Dimension 24. Here we must have θL = E12 + f , with f ∈ S12 =
C∆. Thus

θL = E12 + cL∆

We have

E12 = 1 +
65520

691

∑
n≥1

σ11(n)qn

and comparing the coefficient of q we obtain (note σ11(1) = 1 = τ(1))

rL(2) =
65520

691
σ11(1) + cLτ(1) =

65520

691
+ cL

so that

cL = rL(2)− 65520

691

so that θL is determined by rL(2), the number of vectors of norm 2.
Therefore, for all n ≥ 1 we obtain

rL(2n) =
65520

691
σ11(n) +

(
rL(2)− 65520

691

)
τ(n)

Exercise 5. Ramanujan’s congruence: Noting that 691 is a prime,

τ(n) = σ11(n) mod 691
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It turns out (H. Niemeier 1968) that there are exactly 24 inequivalent
even self-dual lattices of dimension 24. Only one of them, the Leech
lattice, does not contain a vector of norm 2, so that for it

rLeech(2n) =
65520

691

(
σ11(n)− τ(n)

)
In dimension 32, there are > 80 million even self-dual lattices.
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4. E(8) and sphere packings

Given a discrete set of points X ⊂ Rd, such that ||x − y|| ≥ 2 for
all distinct x, y ∈ X (this is a normalization), the associated sphere
packing is

P := ∪x∈XBd(x, 1)

where Bd(x, 1) ⊂ Rd is the ball of radius 1 around x. If X is a lattice,
then P is called a lattice packing. The question is to find “dense”
sphere packings, that is those for which the “fraction” of space covered
by the balls of P is as large as possible. To quantify this, one defines
the density of the packing as

δ(P) := lim sup
r→∞

vol
(
B(0, r) ∩ P

)
volB(0, r)

The d-dimensional sphere packing constant is the maximal density in
dimension d

δd = sup
P⊂Rd

sphere packing

δ(P)

In dimension 1 we clearly have δ1 = 1. In dimension 2, it was
long known (A. Thue 1910, L. Fejes Tóth 1943) that the maximal
density is achieved by the hexagonal lattice packing (Figure 2), for
which δ2 = π/

√
12 ≈ 0.90690 . . . , where each disk touches six others.

Figure 2. The hexagonal circle packing in the plane
(b). The packing (a) has density π/4 = 0.7853 . . . and
the packing (b) has density π/

√
12 ≈ 0.90690 . . . (source:

http://blog.kleinproject.org/?p=742)

Exercise 6. Justify the densities of the planar packings of Figure 2.
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In dimension 3, Johanes Kepler (1611) conjectured that no arrange-
ment of equally sized spheres filling space has density greater than
π/
√

18 ≈ 0.74048 . . . . This density is attained by the face-centered
cubic packing (the familiar pyramidal piling of oranges seen in grocery
stores, Figure 3) and also by uncountably many nonlattice packings,
all obtained as follows: Start with a layer of spheres in a hexagonal
lattice, then put the next layer of spheres in the lowest points you
can find above the first layer, and so on. At each step there are two
choices of where to put the next layer, so this natural method of stack-
ing the spheres creates an uncountably infinite number of equally dense
packings, the best known of which are called cubic close packing and
hexagonal close packing. Gauss (1831) proved that this was the best
lattice packing, but for many years it was not proved that it was the
best sphere packing. A machine aided proof was announced in 1998 by
T. Hales, with a formal machine verifiable proof published in 2015.

Figure 3. Packing oranges source:
http://blog.kleinproject.org/?p=742

In 2016, Maryna Viazovska proved that in dimension 8, the optimal
sphere packing is the lattice packing for the scaled lattice 1√

2
E(8), with

density π4/384 ≈ 0.25367 . . . , and a few days later, together with H.
Cohn, A. Kumar and S.D. Miller, showed that in dimension 24, the
optimal packing is the lattice packing for the Leech lattice. Both these
answers were conjectured for some time. These are the only dimensions
where the optimal packing is expected to be a lattice packing, and in
no other dimension is the answer known.
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Appendix A. Nonexistence of even self dual lattices

We use the information on the theta function to deduce that there
are no even self-dual lattices in dimensions which are not a multiple of
8.

Lemma A.1. If L is an even self-dual lattice then 8 | dimL.

Proof. Assume that 8 - dimL = r. Then either 4r = 4 mod 8 (if r
is odd) or 2r = 4 mod 8 (if r = 2 mod 4) or r = 4 mod 4. Then
replacing L by either L⊕L⊕L⊕L or L⊕L, we arrive to the situation
dimL = 4 mod 8. Then the functional equation reads

θL(−1/τ) = (−iτ)dimL/2θL(τ) = −τdimL/2θL(τ)

since dimL = 4 mod 8.
Also θL(τ + 1) = θL(τ).
We define a right action of SL(2,Z) on functions by the “slash oper-

ator”
(f |kγ)(τ) := j(γ, τ)−kf(γ(τ))

where j(γ, τ) = cτ + d) for γ =

(
∗ ∗
c d

)
. Note that it is indeed a right

action: (
f |kγ
)
|kδ = f |kγδ

since by the chain rule j(γδ, τ) = j(γ, δτ)j(δ, τ) so that(
f |kγ
)
|kδ (τ) = j(δ, τ)−kf |kγ(δ(τ)) = j(δ, τ)−kj(γ, δτ)−kf(γ(δ(τ)))

= j(γδ, τ)−kf((γδ)(τ)) = f |kγδ(τ)

Note that f ∈Mk means f |kγ = f for all γ ∈ SL(2,Z).
Then the functional equation for θL reads

θL|S = −θL
Now apply the slash operator |kR with the element R := ST and k =
dimL/2:

θL|R = θL|ST = (θL|S)|T = −θL|T = −θL
On the other hand, since R3 = I we have

θL = θL|R3 = ((θL|R)|R)|R = −θL
which forces θL = 0. But θL(i∞) = 1, giving a contradiction. �


